Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Thromb Haemost ; 20(4): 1008-1014, 2022 04.
Article in English | MEDLINE | ID: covidwho-1662290

ABSTRACT

BACKGROUND: Hypercoagulability and endothelial dysfunction are hallmarks of coronavirus disease 2019 (COVID-19) and appear to predict disease severity. A high incidence of thrombosis despite thromboprophylaxis is reported in patients with moderate to severe COVID-19. Recent randomized clinical trials suggest that therapeutic-intensity heparin confers a survival benefit in moderate-severity COVID-19 compared to standard-intensity heparin, potentially by harnessing heparin-mediated endothelial-stabilizing and anti-inflammatory effects. OBJECTIVE: We hypothesized that patients with moderate-severity COVID-19 exhibit enhanced hypercoagulability despite standard-intensity thromboprophylaxis with low molecular weight heparin (LMWH) compared to non-COVID-19 hospitalized patients. METHODS: Patients with moderate COVID-19 and a control group (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]-negative hospitalized patients) receiving LMWH thromboprophylaxis were recruited. Markers of endothelial damage and plasma thrombin generation parameters were assessed. RESULTS: Tissue plasminogen activator levels were significantly increased in the COVID-19 group (8.3 ± 4.4 vs. 4.9 ± 2.4 ng/ml; P = .02) compared to non-COVID-19-hospitalized patients. Despite thromboprophylaxis, mean endogenous thrombin potential was significantly increased among COVID-19 patients (1929 ± 448 vs. 1528 ± 460.8 nM*min; P = .04) but lag time to thrombin generation was significantly prolonged (8.1 ± 1.8 vs. 6.2 ± 1.8 mins; P = .02). While tissue factor pathway inhibitor (TFPI) levels were similar in both groups, in the presence of an inhibitory anti-TFPI antibody, the difference in lag time between the groups was abrogated. CONCLUSIONS: Collectively, these data demonstrate that COVID-19 of moderate severity is associated with increased plasma thrombin generation and endothelial damage, and that hypercoagulability persists despite standard LMWH thromboprophylaxis. These findings may be of clinical interest given recent clinical trial data which suggest escalated heparin dosing in non-severe COVID-19 may be associated with improved clinical outcomes.


Subject(s)
COVID-19 , Thrombophilia , Venous Thromboembolism , Anticoagulants/therapeutic use , Heparin, Low-Molecular-Weight/therapeutic use , Humans , SARS-CoV-2 , Thrombophilia/diagnosis , Thrombophilia/drug therapy , Tissue Plasminogen Activator , Venous Thromboembolism/epidemiology
2.
Emerg Infect Dis ; 27(9): 2499-2501, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1435937

ABSTRACT

We examined virus genomic evolution in an immunocompromised patient with prolonged severe acute respiratory syndrome coronavirus 2 infection. Genomic sequencing revealed genetic variation during infection: 3 intrahost mutations and possible superinfection with a second strain of the virus. Prolonged infection in immunocompromised patients may lead to emergence of new virus variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Evolution, Molecular , Genomics , Humans , Immunocompromised Host , Ireland
3.
Front Med (Lausanne) ; 8: 682843, 2021.
Article in English | MEDLINE | ID: covidwho-1337650

ABSTRACT

To date, coronavirus disease 2019 (COVID-19) has affected over 100 million people globally. COVID-19 can present with a variety of different symptoms leading to manifestation of disease ranging from mild cases to a life-threatening condition requiring critical care-level support. At present, a rapid prediction of disease severity and critical care requirement in COVID-19 patients, in early stages of disease, remains an unmet challenge. Therefore, we assessed whether parameters from a routine clinical hematology workup, at the time of hospital admission, can be valuable predictors of COVID-19 severity and the requirement for critical care. Hematological data from the day of hospital admission (day of positive COVID-19 test) for patients with severe COVID-19 disease (requiring critical care during illness) and patients with non-severe disease (not requiring critical care) were acquired. The data were amalgamated and cleaned and modeling was performed. Using a decision tree model, we demonstrated that routine clinical hematology parameters are important predictors of COVID-19 severity. This proof-of-concept study shows that a combination of activated partial thromboplastin time, white cell count-to-neutrophil ratio, and platelet count can predict subsequent severity of COVID-19 with high sensitivity and specificity (area under ROC 0.9956) at the time of the patient's hospital admission. These data, pending further validation, indicate that a decision tree model with hematological parameters could potentially form the basis for a rapid risk stratification tool that predicts COVID-19 severity in hospitalized patients.

4.
Pulm Circ ; 11(3): 20458940211021036, 2021.
Article in English | MEDLINE | ID: covidwho-1269862

ABSTRACT

Pulmonary arterial hypertension is a rare disease of the pulmonary vasculature, characterised pathologically by proliferation, remodelling and thrombosis in situ. Unfortunately, existing therapeutic interventions do not reverse these findings and the disease continues to result in significant morbidity and premature mortality. A number of haematological derangements have been described in pulmonary arterial hypertension which may provide insights into the pathobiology of the disease and opportunities to explore new therapeutic pathways. These include quantitative and qualitative platelet abnormalities, such as thrombocytopaenia, increased mean platelet volume and altered platelet bioenergetics. Furthermore, a hypercoagulable state and aberrant negative regulatory pathways can be observed, which could contribute to thrombosis in situ in distal pulmonary arteries and arterioles. Finally, there is increasing interest in the role of extracellular vesicle autocrine and paracrine signalling in pulmonary arterial hypertension, and their potential utility as biomarkers and novel therapeutic targets. This review focuses on the potential role of platelets, extracellular vesicles and coagulation pathways in the pathobiology of pulmonary arterial hypertension. We highlight important unanswered clinical questions and the implications of these observations for future research and pulmonary arterial hypertension-directed therapies.

5.
PLoS Biol ; 19(2): e3001109, 2021 02.
Article in English | MEDLINE | ID: covidwho-1088651

ABSTRACT

Coronavirus Disease 2019 (COVID-19), caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has affected over 30 million globally to date. Although high rates of venous thromboembolism and evidence of COVID-19-induced endothelial dysfunction have been reported, the precise aetiology of the increased thrombotic risk associated with COVID-19 infection remains to be fully elucidated. Therefore, we assessed clinical platelet parameters and circulating platelet activity in patients with severe and nonsevere COVID-19. An assessment of clinical blood parameters in patients with severe COVID-19 disease (requiring intensive care), patients with nonsevere disease (not requiring intensive care), general medical in-patients without COVID-19, and healthy donors was undertaken. Platelet function and activity were also assessed by secretion and specific marker analysis. We demonstrated that routine clinical blood parameters including increased mean platelet volume (MPV) and decreased platelet:neutrophil ratio are associated with disease severity in COVID-19 upon hospitalisation and intensive care unit (ICU) admission. Strikingly, agonist-induced ADP release was 30- to 90-fold higher in COVID-19 patients compared with hospitalised controls and circulating levels of platelet factor 4 (PF4), soluble P-selectin (sP-selectin), and thrombopoietin (TPO) were also significantly elevated in COVID-19. This study shows that distinct differences exist in routine full blood count and other clinical laboratory parameters between patients with severe and nonsevere COVID-19. Moreover, we have determined all COVID-19 patients possess hyperactive circulating platelets. These data suggest abnormal platelet reactivity may contribute to hypercoagulability in COVID-19 and confirms the role that platelets/clotting has in determining the severity of the disease and the complexity of the recovery path.


Subject(s)
Blood Platelets/virology , COVID-19/blood , Adenosine Triphosphate/metabolism , Aged , Blood Coagulation , Blood Platelets/cytology , Enzyme-Linked Immunosorbent Assay , Female , Hemostasis , Humans , Inflammation , Intensive Care Units , Male , Mean Platelet Volume , Middle Aged , P-Selectin/blood , Phenotype , Platelet Factor 4/blood , Platelet Function Tests , Thrombopoietin/blood
SELECTION OF CITATIONS
SEARCH DETAIL